A 3D nyomtatással a
BAC-nek sikerült a két hetes munkafolyamatot mindössze néhány órásra
rövidítenie, így hamarabb be tudta szerelni a légszűrőházat, és megkezdhette
annak ellenőrzését, hogy a terv a közutakon is működőképesnek bizonyul-e.
A BAC Mono R nagyjából
270 km/h-s végsebességre képes, teljesítménye meghaladja a 340 féklóerőt (bhp),
tömegarányos teljesítménye pedig eléri a 612 féklóerőt tonnánként. Azáltal,
hogy több oxigént képes eljuttatni az égéstérbe, az autó légszűrőháza
kulcsfontosságú szerepet játszik abban, hogy az autó ilyen sebesség és
teljesítmény elérésére lehet képes. Működés közben az alkatrész jellemzően 100
°C feletti hőmérsékletnek van kitéve, ezért a végterméknek teljes egészében
szénszálas anyagból kell készülnie.
3D nyomtatással készült működőképes légbeszívó tesztelése a Mono R szuperautóval a közúti teljesítmény javítása érdekében.
A BAC csapata a Stratasys F900 Production 3D nyomtatóval kinyomtatta a légszűrőház prototípusát a cég szénszálakkal erősített, hőre lágyuló Nylon 12CF alapanyagából, amely akár 140 °C-os hőmérsékletnek is képes ellenállni. Ezzel a megoldással a vállalat mindössze néhány napon belül el tudta végezni a teljesítményteszteket, és biztos lehetett benne, hogy ha szükséges, még a hét vége előtt egy újabb változatot is össze tud állítani. A hagyományos prototípus-készítési módszerek alkalmazása esetén az esetleges tervmódosítások további két hetes várakozást eredményeztek volna.
„A gyors, hatékony, ipari szintű additív gyártás áttörést hozott a fejlesztési folyamatban – állapította meg Ian Briggs, a BAC tervezési igazgatója. – 3D nyomtatással órák alatt elkészült a légszűrőház pontos prototípusa, amelyet azonnal beépíthettünk az autóba, és megkezdhettük a tesztelést. Így sokkal hamarabb el tudtunk jutni a fejlesztéstől a gyártásig. A prototípus teljesítménye nagyon közel állt az öntőformában készült, szénszállal megerősített műanyagéhoz, és könnyen megállta a helyét a tesztpályán. Ez csak a kezdet volt a BAC csapata számára. A tervezői csapat a jövőben is szeretne élni az additív gyártás előnyeivel, hogy újabb és újabb korlátokat törhessünk át.”
3D nyomtatással készült befogó készülékek és ülékek: egy hatékony gyártási megoldás
A befogó készülékek és ülékek kulcsfontosságú szerepet játszanak a gyártásban. A befogó készülékek olyan egyedileg tervezett és legyártott szerszámok, amelyek egy művelet során a munkadarabok mozgását szabályozzák, az ülékek pedig az ipari folyamat végrehajtása közben egy adott helyen rögzítik a munkadarabokat. A befogó készülékek és ülékek a megbízható, ismétlődő tevékenységekből felépülő gyártás alappillérei.
A gyors és emberi beavatkozást szinte nem is igénylő képességeknek köszönhetően a 3D nyomtatás (más néven az additív gyártás) hatékony megoldást kínál a befogó készülékek és ülékek előállítására. A 3D nyomtatáshoz használt gyártási segédeszközök csökkentik az átfutási időt, költséghatékonyak miközben növelik a teljesítményt és a gyártási hatékonyság is.
Gyorsabb gyártás
A 3D nyomtatás nagyszerűsége többek között a rövidebb átfutási időben rejlik – egyes alkatrészeket akár néhány óra leforgása alatt le lehet gyártani. A befogó készülékek és ülékek első darabjainak elkészítése esetenként kritikus jelentőséggel bírhat, amely 3D nyomtatással minden eddiginél gyorsabban végrehajtható. A 3D nyomtatással készült befogó készülékek és ülékek előállításához elegendő egy digitális fájl, és nincs szükség tényleges szerszámkészítésre, így azok igény szerint legyárthatók. A CAD-fájl bármikor módosítható, majd a nyomtatás néhány nap alatt újból elvégezhető.
Költségcsökkentés
A rövid átfutási időnek, az alkatrészek összevonásának és az emberi beavatkozást nélkülöző ipari 3D nyomtatóval történő gyártásnak köszönhetően a befogókészülékek és ülékek ipari 3D nyomtatással történő előállítása költséghatékony megoldás. A 3D nyomtatással csökkenthető az anyagveszteség, valamint a készletezéssel és tárolással kapcsolatos kiadások.
Nagyobb teljesítmény
A 3D nyomtatással készült befogó készülékek és ülékek esetében az ergonómiai fejlesztések a gyártott szerszám költségét nem befolyásolják, de növelik a gyártási hatékonyságot. A CAD-fájlok az egyes nyomtatások előtt egyszerűen módosíthatók, így a szerszámok és segédeszközök zökkenőmentesen fejleszthetők és testreszabhatók. Az additív gyártással elérhető tervezési szabadságnak köszönhetően olyan geometriák is kialakíthatók, amelyekkel javul a szerszámok kezelhetősége és használhatósága, így kényelmesebb a munkavégzés. E befogó készülékeknek és ülékeknek köszönhetően tehát további költségek nélkül növelhető az alkalmazotti hatékonyság és biztonság.
Tervezési szabadság
A gyárthatósági célok mentén tervezett, megmunkálással és egyéb hagyományos gyártási eljárásokkal csak nehézkesen előállítható, összetett befogó készülékek és ülékek a STRATASYS ipari 3D nyomtatási technológiák révén jobb ár/érték aránnyal állíthatók elő. Az additív gyártás biztosította tervezési szabadságnak köszönhetően eltűntek a hagyományos gyártási megoldások korlátai, ezzel új lehetőségek nyíltak meg a szerszám-konfigurációkban. Mivel ezzel a technológiával összetettebb tervek is kezelhetők, a korábban több részegységből elkészített szerszámok mostantól akár egyetlen egységként is gyárthatók és megvalósíthatók.
A részegységek összevonásával a szerszámok tömege is csökkenthető, így kényelmesebb lehet a munkavégzés. A 3D nyomtatási folyamatokban használt nagy teherbírású műanyagok kiváló alternatívát jelentenek a hagyományosan használt fémekkel szemben. A 3D nyomtatással készült könnyű befogó készülékek és ülékek ugyanolyan vagy jobb képességeket kínálnak, és ráadásul egyszerűbben használhatók.
A hatékony megoldás
A 3D nyomtatással készült befogó készülékek és ülékek használatából eredő előrelépés hatalmas előnyt jelenthet az Ön cége számára is.
A Stratasys magyarországi partnereként a professzionális szolgáltatásokért felelős csapatunk segít feltárni annak lehetőségeit, hogy a 3D nyomtatással készült befogó készülékek és ülékek alkalmazásával hogyan optimalizálhatja cége működését. Ajánlatkérésért keresse kollégáinkat!
Ha további információkra kíváncsi a 3D nyomtatással készült befogó készülékek és ülékek előnyeivel, illetve azzal kapcsolatban, hogyan növelheti a gyártási szakértelmet ezzel a forradalmi technológiával, töltse le tanulmányunkat!
Egy 3D nyomtató, ami termelésre és gyártásra is kész?
Sokan rajongunk a 3D nyomtatásért, de sokszor nehéz eldönteni, hogy ezzel a 30 éve töretlenül fejlődő és változó technológiával kapcsolatban melyek a valós, és melyek a túlzó állítások. Manapság leggyakrabban a „termelésre kész” hívószóval találkozhatunk. De mit is jelent ez valójában?
A 3D nyomtatási technológiát már három évtizede használják prototípusok készítésére. De a 30-ból jó 20 év során a korai alkalmazók – elsősorban a járműiparban – hogy eleget tehessenek a gyártási igényeknek, egyre nagyobb elvárásokat támasztottak egyes 3D nyomtatási technológiákkal szemben.
A „gyártásra készség” népszerűségét alapvetően két tényező motiválhatja. Az első a befektetés. Számos, komoly háttérrel rendelkező vállalat lép be az iparágba azért, hogy a gyártási igények kielégítése érdekében egy új technológiát vagy egy már meglévő technológia egy új változatát hozza létre. A másik tényező a technológiai érettség. A Stratasys azon dolgozik, hogy finomítsa a gyártásban érdekelt felhasználóknak kínált technológiát. A repülőgépbelsők kialakításához készült F900mc Aircraft Interiors Solution (AIS) megoldás formájában az iparág egyedülálló ismétlési pontossággal és megbízhatósággal rendelkező additív gyártási eljárása jött létre.
De hogyan teljesít a Stratasys technológia más iparági szereplők „gyártásra kész” technológiáihoz képest?
Az elmúlt hónapban a 3Dprint.com egy ötrészes sorozatot tett közzé, amely pontosan ezt a kérdést vizsgálja. A sorozat címe „Az additív gyártási eljárások változékonysága” (Variability of Additive Manufacturing Processes), a szerző Todd Grimm. A sorozat hat technológiát hasonlít össze, köztük a Stratasys F900mc AIS FDM-technológiát, valamint az MJF, az SLA, az SLS és a CLIP technológiát, továbbá egy márkafüggetlen FFF-folyamatot – a fő mérce a megismételhetőség volt. A mechanikus tulajdonságokat, a geometriai pontosságot és a precizitást (megismételhetőséget) statisztikai módszerekkel értékelték, szemben a korábbi, más és más eredményekkel végződő tanulmányokkal. A tesztelést függetlenül, robusztus és következetes módszertannal hajtották végre.
Ami a mechanikai tulajdonságokat illeti, az FDM, az MJF és az SLA is meglehetősen jól teljesített: a szakítószilárdság és a rugalmassági modulus variációs együtthatói (CoV) az 1–4%-os tartományon belül voltak. Az SLS, a CLIP és a márkafüggetlen FFF már nem teljesített ilyen jól. Különösen a márkafüggetlen FFF z tengelyi rugalmassági modulusának CoV-értéke volt elképesztő (54%-os), a tulajdonságok ebben az esetben tehát gyakorlatilag kiszámíthatatlanok. A Stratasys FDM technológiájának 1,8%-os szórásértékével összehasonlítva egyértelmű, hogy nem minden FDM/FFF, extrudálással működő gyártási technológia tekinthető egyenlőnek a felhasználók szempontjából.
Ami a méreteket illeti, számos kis és nagy léptékű mérést végeztek annak érdekében, hogy a pozitív és negatív alaksajátosságokat jellemezhessék. A CLIP technológia az általa kínált alacsony nyomtatási volumen miatt sajnos nem került be a tanulmány ezen részébe. A márkafüggetlen FFF technológiával készült vizsgálati alkatrészeket a deformálódások csökkentése érdekében a nyomtatás után fel is kellett melegíteni, így azonban egyes méréseket nem lehetett elvégezni.
Az adatokból jól látható, hogy a különböző technológiák különböző szempontokból teljesítettek jól. Érdekes módon az SLS és a márkafüggetlen FFF technológia remek alaksajátosság-pontosságot biztosít, a nagymértékű szórás azonban azt mutatja, hogy ezek a technológiák pontosak ugyan, de nem precízek. Ezzel szemben az SLA rendkívül magas precizitást és konzisztens eredményeket biztosít, az alaksajátosságok azonban viszonylag pontatlanok. Grimm ezt következőképp összegezte: „Az MJF-nél egyszerre hiányzott a pontosság és a precizitás. A pontosság és a precizitás legjobb kombinációját pedig az FDM biztosította.”
A 3D nyomtatás rengeteget fejlődött az idők során. Bár a technológiák mindegyike továbbra is a „sorozatgyártási képesség” elérésére törekszik, az újdonságok és a régóta megbízhatóan teljesítők közötti különbségek egyértelműek, hiszen a Stratasys évről évre az ügyfelekkel szorosan együttműködve fejleszti termékeit. Ez nehéz és időigényes munka, de „a tanulmány bemutatta, hogy a mechanikai tulajdonságok és a geometriai méretek szórása terén az FDM technológia jár az élen a gyártásra készségért folytatott versenyben.”
Ebben az esetben nem csupán egy múló divatról van szó. Felkészült a „gyártásra kész” technológiákra és a következő lépésre?
A VARINEX Zrt. 25 éve szolgáltat 3D nyomtatást és kínál profitorientált megközelítést. Projektindítás előtt lépjen kapcsolatba szakértő mérnök kollégánkkal a 3dp@varinex.hu email címen.
Az FDM eljárás a 3D nyomtatással történő gyártás tervezési szabadságát kínálja, emellett felgyorsítja a fejlesztési és gyártási folyamatokat. Lehetővé teszi a nagy szilárdságú, hőre lágyuló műanyagok felhasználását már a prototípusok készítésénél is.
Olyan nagy szilárdságú, mérnöki felhasználású alapanyagokat is alkalmazhat, mint a polikarbonát és az ULTEM™ 9085 resin hőre lágyuló műanyagok.
Az FDM technológiával hőálló és vegyi anyagoknak ellenálló, kiemelkedő szilárdság–tömeg aránnyal rendelkező alkatrészek és működőképes prototípusok is készíthetők.
Hogyan működik az FDM technológia?
A Fused Deposition Modeling (FDM) az egyik legszélesebb körben alkalmazott 3D nyomtatási eljárás napjainkban, amelynek során megolvasztott műanyagot oszlatnak szét a nyomtatási felületen vékony rétegekben. Az FFF (Fused Filament Fabrication) néven is ismert 3D nyomtatási eljárás azonos alapokon nyugszik, mint az FDM eljárás, azonban az FDM technológia a magas hőmérsékletű, zárt munkatér és a több, mint 30 éves fejlesztési munka eredményeként olyan nagyteljesítményű műanyagok nyomtatására is alkalmas, amelyre az FFF technológia nem.
Az FDM gyártási technológiát széles körben használják a repülőgépiparban, a közlekedési iparágban és különböző ipari alkalmazásokban.
Az FDM technológia lehetővé teszi olyan mérnöki felhasználású, hőre lágyuló műanyagok használatát, amelyek nehéz körülmények között, kemény teszteken és nagy igénybevételt jelentő alkalmazási területeken is megállják a helyüket.
Az FDM technológiával a kizárólag 3D nyomtatással előállítható geometriák gyártásához az iparból már jól ismert, nagy szilárdságú, stabil műanyagokat használhatja.
Az FDM leggyakoribb alkalmazási területei
Az FDM segítségével a vállalatok még több lehetőségre mondhatnak igent az alacsony darabszámú, egyedi gyártási alkatrészek előállítása terén.
Gyártási alkatrészek
Befogó készülékek és ülékek
Működőképes prototípusok
A mérnöki felhasználású, hőre lágyuló műanyagok és az FDM
Számos iparág-specifikus hőre lágyuló műanyag közül választhat, ha speciális tulajdonságok elérése a cél. A nehézgépiparban és a közlekedési ágazatban a PC-ABS-t használják kiváló szilárdsága miatt, a repülőgépipari mérnökök pedig az ULTEM™ 9085 és az ULTEM™ 1010 resineket részesítik előnyben az FST-minősítésük és az FAA 25.853-as számú szabványának való megfelelőségük miatt.
Egyes anyagok biokompatibilitásuknak és MRI-készülékekben való használhatóságuknak köszönhetően egészségügyi alkalmazásokra is ideálisak.
Az FDM technológiát feltaláló család tagjának lenni azt jelenti, hogy a Stratasys kutatás-fejlesztés iránti erős elkötelezettsége támogat minket. A Stratasys csapata folyamatosan kutatja az új alkalmazási területeket és lehetőségeket.
A VARINEX Zrt. több évtizedes 3D nyomtatási tapasztalattal rendelkezik, és tudja, hogyan használható az FDM technológia az adott alkalmazási területen. Projektindítás előtt lépjen kapcsolatba szakértő mérnök kollégánkkal.
Kérdése van az FDM technológiával kapcsolatban? Szívesen válaszolunk.
Ismerje meg a Stratasys mérnöki FDM alapanyagait: Polikarbonát, PC-ABS, Nylon
Ha Stratasys FDM (Fused Deposition Modeling) 3D nyomtatót használ, az alapanyaglehetőségek végtelennek tűnhetnek, de fontos, hogy megbizonyosodjon arról, hogy az Önnek legjobban megfelelő Stratasys alapanyagokat használja az FDM alkalmazásokhoz. Egy előző cikkünkben röviden ismertettük az ABS, az ASA és a PLA alapanyagokat. Most az FDM mérnöki alapanyagok ismertetésén a sor: a Polikarbonát, a PC-ABS és a Nylon alapanyagokat mutatjuk be, amelyek Stratasys Fortus típusú nyomtatóval rendelkező ügyfelek számára elérhetőek a „mérnöki műanyagok” csomagban.
Mi a Polikarbonát (PC)?
A polikarbonát anyagok a folyamatosan ismétlődő karbonát monomer szerkezetükről kapták a nevüket, sokan Lexánként ismerhetik (a Lexan a SABIC védjegye). A Polikarbonát (PC) rendkívül népszerű az iparban. Nagy szilárdság, ütésállóság és könnyű kezelhetőség jellemzi az ebből az alapanyagokból készült modelleket. A többi amorf polimerhez hasonlóan a PC alapanyag jól nyomtatható, de kontrollálni kell a zsugorodását, ebből kifolyólag nem tanácsos a nyílt munkaterű nyomtatókkal való használata, de a zárt, fűtött és ipari sztenderdek szerint kontrollált hőmérsékletszabályozással és -eloszlással rendelkező berendezésekben a nyomtatása nem jelent kihívást a felhasználóknak.
A Stratasys Polikarbonát fehér színben kapható minden Fortus rendszerhez. Nyomtatható törhető PC-támaszanyaggal (standard T16 tippekkel) vagy oldható SR-100 (T12-SR100 tippekkel) támaszanyaggal, 127-330 mikron rétegvastagsággal.
Működési szempontból a PC könnyen használható, ugyanazokkal az alaplapokkal mint az ABS és az ASA.
Fontos, hogy a PC hajlamos a termikus sokkra, így a legjobb elkerülni a forró alkatrészek hideg tisztító tartályba való helyezését vagy akár fordítva, hogy elkerüljék a repedéseket.
140° C-nál (4,5 Bar nyomásnál) a PC-nek van a legmagasabb hőstabilitása a konkurens alapanyagokkal szemben. Kivételesen erős tömörítésnél, a tömör részek terhelése deformáció nélkül, akár öt tonna/cm3is lehet. Nagy kopásállósága miatt remek lemezformázó szerszámok elkészítésére, és sok esetben jobb választás, mint a hagyományos acél szerszámok. A szerszámozás mellett a Polikarbonát remekül használható ülékek és mérősablonok, illetve vákuumszerszámok gyártására is.
3D nyomtatott PC palackfúvó szerszám
Kiváló elektrosztatikus szigetelő. Ha a nyomtatott alkatrészeket érintkezésbe kell hozni élelmiszerekkel, akkor biokompatibilis változatban is elérhető fehér vagy áttetsző színben (ISO 10993 USP Class VI).
Mi a PC-ABS?
3D nyomtatott PC-ABS szerszám markolat
A PC-ABS a Polikarbonát és az ABS ötvözete. 30% -kal erősebb, mint az ABS, 13% -kal magasabb a hőtűrése, ezen felül hajlékonyabb és rugalmasabb, mint a PC. A fekete PC-ABS minden Stratasys Fortus FDM géppel nyomtatható, szabványos tipekkel (T10-T20) és alaplapokkal. A PC-ABS alapanyag már elérhető a Stratasys F370-hez is. A magasabb hőtűrés miatt jó választás mérősablonokhoz, szerelő ülékekhez, vákuumszerszámokhoz is. A PC-ABS oldószerrel simítható, pórusai lezárhatók, jó választás lehet tömör, porozitásmentes alkatrészeket igénylő alkalmazásokhoz is.
Mi a Nylon?
A DuPont védjegye után a Nylon név most már a poliamid néven ismert polimerek osztályának szinonimája. Míg a legtöbb Stratasys FDM-anyag amorf polimerként van besorolva, a nylonok félkristályosak, mert a molekuláris szerkezetük képes rendezett kristályszerkezeteket kialakítani. Ezek a kristályos szerkezetek lehetővé teszik, hogy a nylon anyagok rendkívül erősek maradjanak, rendkívül vékony szálakban is; ebből kifolyólag nagyon népszerűek a textiliparban. A 3D nyomtatás során a nylonok amorf polimerekként viselkednek, de a nyomtatott alkatrészeket kristályos szerkezetekké lágyíthatjuk, drasztikusan javítva azok szilárdságát, hőállóságát és izotropiáját.
A Nylon12 fekete színben elérhető minden Stratasys Fortus FDM gépen. A szabványos tipekkel 127-330 mikronrétegben nyomtat speciális építőlemezeken, oldható SR-110 támasztóanyaggal (T12-SR100 tip). A nylonok különösen higroszkóposak (nedvességet szívnak magukba a levegőből) és szárazon kell tartani őket ahhoz, hogy jól nyomtathatók legyenek. Használatakor különösen ügyelni kell arra, hogy az alapanyagtároló kaniszter zárva legyen, és tárolásnál is fontos, hogy ne kapjanak nedvességet. A nyomtatás után az összes nylon alkatrészt legalább 4 órán át hőkezelni kell, hogy az a maximális teljesítményt nyújtsa. A nylon alkatrészek általában jól nyomtathatók, a sacrificial tower beállítással javíthatunk a jó felületi minőségen.
A Nylon nagyon erős, keményebb, de kevésbé hajlamos a fáradásos törésre, mint a PC-ABS, ráadásul jobb kémiai ellenállással is rendelkezik. A Nylon12 a legjobb választás pattanókötésekkel rendelkező funkcionális prototípusokhoz.
3D nyomtatott Nylon 12-CF szénszálas fúrósablon
Az F900 esetében elérhető a fekete Nylon6, 254 és 330 mikron rétegvastagsággal. A Nylon12-hez hasonlóan a Nylon6 is rendkívül hajlékony, de 50%-kal nagyobb szilárdsággal és hőállósággal rendelkezik, mint a Nylon12, és majdnem kétszer olyan merev. Tehát, bár sok alkalmazásban a Nylon12 fejlettebb verziójának tekinthető, ez jobban megfelel szerszámok elkészítéséhez. Az olyan befogókhoz és ülékekhez, amelyeknek merevnek kell lenniük, de bírniuk kell a kemény kezelést és az esetleges elejtést, nagyszerű a Nylon6 alapanyag.
Összefoglalva, a műszaki hőre lágyuló műanyagok ideálisak, ha a szilárdság, a hőtűrés, a merevség és a tartósság követelményei alapján a szabványos ABS, ASA és PLA műanyagok már nem megfelelőek az adott alkalmazáshoz. A PC, PC-ABS és a Nylon jól illeszkedik a funkcionális prototípusokhoz és végleges alkatrészekhez.
A VARINEX Zrt. szolgáltatásai mögött nem csupán az iparágvezető Stratasys áll – a 25 éves 3D nyomtatási tapasztalat mellett egy fáradhatatlan mérnökcsapattal is rendelkezünk, amely bármely projektszakaszban segítséget nyújt Önnek. Kérdése van? Segítünk! Projektindítás előtt lépjen kapcsolatba a szakértő mérnök kollégákkal a 3dp@varinex.hu email címen!
Stratasys standard FDM alapanyagok: ABS, ASA és PLA
Amennyiben egy Stratasys FDM (Fused Deposition Modeling) 3D nyomtató iránt érdeklődik, esetleg már rendelkezik is eggyel, fontos számunkra, hogy a lehető legjobban ki tudja használni a benne rejlő lehetőségeket. A berendezés gyors megtérülése, az idő- és költségmegtakarítás egy-egy adott alkalmazáshoz a megfelelő anyagok kiválasztásával maximalizálható. Amennyiben ön még most ismerkedik az additív gyártás világával, akkor az anyagok kiválasztásában kérje szakértő kollégáink segítségét. Ebben a cikkben röviden ismertetjük a Stratasys FDM alapanyagokat, amellyel támpontot szeretnénk adni az alkalmazásokhoz megfelelő műanyagok kiválasztásában. Először a leginkább elterjedt, standard alapanyagokra, az ABS-re, a PLA-ra és az ASA-ra összpontosítunk.
Az FDM technológiájú 3D nyomtatók két legelterjedtebb alapanyaga az ABS és a PLA. Az ABS-volt az első az FDM technológiában használt hőre lágyuló műanyag, amikor a technológiát a Stratasys-t alapító Scott Crump 1989-ben szabadalmaztatta.
Mi a PLA?
A Poly Lactic Acid (vagy polilaktid) alapesetben áttetsző poliészter, amely természetes keményítőkből (kukorica, cukornád stb.) származik. Kemény és merev, alacsony az üvegesedési hőmérséklete (Tg) és biológiailag lebontható (komposztálható), így az élelmiszer-csomagolásban is népszerűvé vált, többek között a környezetbarát termékek között. A PLA kevésbé tágul, mint a például az ABS alapanyag, amikor felmelegítjük, ezzel a tulajdonsággal hatékonyan használható az olcsóbb kategóriába tartozó, munkatér-fűtés nélküli berendezésekben is. A PLA önmagában nagyszerű anyag, és elérhető a Stratasys F123 3D nyomtatókban is. UV fényre érzékeny, de nehezebb és merevebb, mint az ABS, és ellenáll az acetonnak.
A PLA egyedülálló tulajdonságai megnehezítették a megbízható oldható támaszanyag kialakítását. A PLA-val általában használt támaszanyag vízben oldódik, ebből fakadóan nagyon érzékeny a környezet páratartalmára és nehezen kezelhető. A Stratasys FDM 3D nyomtatókban a PLA az egyetlen alapanyag, amelynél a modellanyagot használjuk támaszanyagként is. A PLA gyengesége a modellalapú támasztószerkezetekre vonatkozik, amelyeket kézzel kell eltávolítani, és ez a folyamat negatívan befolyásolja a gyártott modell felületét, amelyek így utólagos felületkezelést igényelnek.
Mi az ABS?
Az Akrilnitril-Butadién-Sztirol egy hőre lágyuló polimer; mindenütt jelen van a fröccsöntő és hőformázó iparágakban, mint tartós, általános felhasználású alapanyag.
A polibutadién gumi monomer rugalmasságot és ütésállóságot eredményez, míg a sztirol monomer kémiai ellenállást, keménységet és az ABS-re jellemző csillogást kölcsönöz (az akrilnitril lényegében együtt tartja az összetevőket). Ezen monomerek arányainak beállításával és különböző lágyítók hozzáadásával a műanyaggyártók különféle keverékeket állíthatnak elő a speciális alkalmazásokhoz. A Stratasys által használt ABS alapanyag (ABS plusz -P430 és ABS-M30) FDM-re specializálódott kialakítású, az extruderben nem szenesedő alapanyag. Egyik változata az ISO-minősítésű keverék ABS-M30i-ként, valamint elektrosztatikus disszipatív, vagyis ESD minősítésű anyagként az ABS-ESD7 is a felhasználók rendelkezésére áll. Az elektromos vezetőképesség növelése mellett az ABS-ESD7-ben hozzáadott szén 10%-kal növeli az alkatrészek szilárdságát és a merevségét. Az ABS alapanyagok kémiai ellenállása nem kiemelkedő, oldja az aceton, így kiválóan alkalmas a modellek felületkezelésére (aceton gőzölés), de nem alkalmas kültéri használatra, mert az UV fény fakóvá és törékennyé teszi a gyártott modelleket.
ABS -ESD7 műszerház
Mi az ASA?
Az ASA (Akrilnitril-Sztirol-Akrilát) kémiailag nagyon hasonlít az ABS-hez, a gumi monomer kivételével; a polibutadiént akrilát gumi helyettesíti. A butadién az UV fényre reagál, amely az ABS alapanyagot a napfényben törékennyé teszi, így az ASA, amely nem tartalmaz butadiént sokkal inkább ellenáll az UV-fénynek és (az adott akrilát-észtertől függően) valamivel jobb kémiai ellenállási profilt eredményez, az aceton ennél az alapanyagnál is használható felületsimításra és ragasztásra.
A legtöbb műanyaghoz hasonlóan az ABS-nek és az ASA-nak is meglehetősen magas a termikus tágulási együtthatója (CTE). Ez a megfelelő nyomtatási környezet hiányában kihívásokat jelent a 3D nyomtatásban, mivel belső feszültséget hoz létre az alkatrészek nyomtatásakor, ami elhajlást, gyenge részeket és rétegek közötti elválást is eredményezhet. A stabil nyomtathatóság, méretpontosság és az ipari, 4% alatti maximális hibaarány érdekében minden Stratasys 3D nyomtató fűtött munkateret használ. A megoldás arra épül, hogy a munkatérben elhelyezett alkatrészek a lehető legmagasabb hőmérsékleten készüljenek (olvadás vagy megszakítás nélkül), majd a nyomtatás után egyenletesen, programozottan kerüljenek lehűtésre. A fűtött munkatér és a gyári alapanyag egységes összetétele és állandó minősége biztosítja a nagyon pontos zsugorodási tényezőt. Ez az elsődleges oka, hogy a Stratasys FDM gépek nyomtatási pontossága kiváló, és a nyomtatás megismételhető egyenletes minőségben a maximális ipari elvárásoknak megfelelően.
Mivel az ABS és az ASA megbízható, különböző színekben kapható, és az alámetszett részek utómunka nélküli nyomtathatóságának érdekében oldható támaszanyagokkal nyomtatható, a prototípusgyártáshoz és kisebb sorozatgyártáshoz tökéletes választás. Az ASA kültéri használatra is megfelelő, az ABS pedig minden más, általános célú felhasználásra megoldást jelent. Nagyszerű és könnyen elérhető alapanyagopció mindkettő az általános gyártósori eszközök előállításához.
ASA visszapillantótükör burkolat
Oldható támaszanyagok
Külön alkalmazási lehetőségek állnak rendelkezésünkre a Stratasys speciális, oldható támaszanyagaihoz is. Az ebből az anyagból készült szerszámokat sacrifical (veszejtéses) szerszámoknak nevezzük. A felhasználók a modellt és a támaszanyagokat tudják használni úgy is, hogy a gyártott termék a támaszanyagból készül, az ABS / ASA pedig a tartószerkezet. Az így kapott alkatrész üvegszálas vagy szénszálas anyaggal van körbe laminálva vagy gumiba mártva, akár galvanizáljuk/fémmel bevonjuk, majd az alakadó támasztékon egyszerűen kioldjuk és megkapjuk az az alkatrészt, amelyet nem tudtunk volna egy darabban legyártani az üvegszálas vagy kompozit technológiához használt hagyományos szerszámokkal és eljárásokkal. Ugyanez a koncepció alkalmazható a homok, gipsz vagy szilikon öntésére is. Az SR-20, SR-30 és SR-35 támaszanyagok mind melegített alkáli oldatban (WaterWorks vagy EcoWorks) lúgos folyadékban oldhatók.
A prototípus- és a kis-sorozatú gyártáshoz az ABS, az ASA és a PLA kiváló és költséghatékony alapanyagok. Amikor a végfelhasználói alkatrészek, a szerszámok és a nagy teherbírású szerelvények és gyártósori befogók, mérősablonok gyártására van szükség, már egy mérnöki kategóriájú hőre lágyuló műanyag alapanyag szükséges (Polikarbonát, PC-ABS, Nylon).
A VARINEX Zrt. szolgáltatásai mögött nem csupán az iparágvezető Stratasys áll – a 25 éves 3D nyomtatási tapasztalat mellett egy fáradhatatlan mérnökcsapattal is rendelkezünk, amely bármely projektszakaszban segítséget nyújt Önnek. Kérdése van? Segítünk! Projektindítás előtt lépjen kapcsolatba a szakértő mérnök kollégákkal a 3dp@varinex.hu email címen!
A STRATASYS a nagy teljesítményű és professzionális FDM technológia előnyeinek kiaknázásához az F123 3D nyomtató sorozatnál a berendezésekhez kifejlesztett GrabCAD Print szoftvert ajánlja. A GrabCAD Print az ipar speciális elvárásainak is megfelelő és intelligensen testre szabható 3D nyomtatási megoldást biztosít a felhasználóknak.
Légterelő cső TPU 92 alapanyagból
A kihívás:
Az elasztomer anyaghasználat továbbra is növekszik világszerte, és a különböző iparágak egyre inkább elkezdtek a 3D nyomtatás felé fordulni a költségek és a piacra jutás idejének csökkentése érdekében. Mint minden technológiánál, az optimális eredmények elérése függ az elasztomer egyedi kihívásainak megértésétől, tekintettel a rugalmasságára.
A nagy, ipari nyomtatási rendszerek intenzív munkafolyamatokkal dolgoznak. A kisebb, alacsonyabb árú FDM rendszerek előnye lehet az alacsony kezdeti költség, de építési kapacitásuk korlátozza az előállítani kívánt alkatrészek méretét. Rendkívül fontos, hogy a támaszanyag ne korlátozza az alkatrészek összetettségét. Ezek az alacsonyabb árú nyomtatók a modellek anyagából építenek támaszt, aminek következtében felület minősége romlik a támasz eltávolítása során.
A megoldás: STRATASYS F123 és az oldható támaszanyag
A válasz erre a kihívásra az elasztomer 3D nyomtató rendszer, amely jó hozzáférhetőséget, nagy építési szabadságot, könnyű kezelhetőséget és oldható támaszanyagot kínál. Ez a kombináció lehetővé teszi nagyobb, komplexebb elasztomer alkatrészek gyors és költséghatékony előállítását.
Ütésálló burkolat TPU 92 alapanyagból
A STRATASYS F123 ™ sorozatú 3D nyomtatók mindezeket a képességeket kínálják az FDM ™ TPU 92A, hőre lágyuló poliuretán elasztomer műanyagból. Ezek közül a műanyagok közül azonban a legértékesebb a QSR ™ oldható támaszanyag. A QSR lehetővé teszi, hogy olyan komplex geometriákat nyomtasson, amelyek más módon kivitelezhetetlenek lennének. Az F123 sorozat bizonyítottan megbízható és valódi plug-and-play alkalmazást biztosít.
A TPU-t (Thermoplastic Polyurethane Elastomer) az olyan kiváló tulajdonságai, mint a nyújthatóság, a kiváló szilárdság és az extrém tartósság, alkalmassá teszik komplex, üreges, rugalmas prototípusok és kis sorozatban gyártható termékek 3D nyomtatására. Az oldható támaszanyagnak köszönhetően nem kell többé tervezési kompromisszumokat kötni, és a költségek is csökkennek.
Az oldható támaszanyag egy erre az eljárásra kifejlesztett tartályban válik le a kész tárgyról, ellentétben a törhető támaszanyaggal, ami kézzel távolítható el. A törhető támaszanyag eltávolítása a belső járatokkal rendelkező csövekből sok időt igényel, feltéve, hogy egyáltalán hozzáférhető. Az oldható támaszanyagokkal készült alkatrészeket azonban egyszerűen bele lehet meríteni az oldatba, amely feloldja a támaszanyagot. Ezen túlmenően az oldható támaszanyaggal elkerülhetők a törhető támasz leválasztásakor jellemző felületi sérülések és mérettartási problémák.
Az új, rugalmas és szakadásálló alapanyag széleskörű felhasználási lehetőséget kínál az iparban, mint pl. az autóipar vagy a sportszergyártás. Többek között készíthetők belőle különféle tömítések, tömlők, csövek, konzolbélések, fogantyúk, felületvédők.
Az Eckhart is 3D nyomtatással optimalizálja gyártósori megoldásait
Az Eckhart ipari automatizálással foglalkozó amerikai vállalat vezető szerepet tölt be additív gyártás felhasználásában az Ipar 4.0 területén. A cég a fejlett ipari megoldások vezetője, elkötelezett amellett, hogy javítsa a gyárban dolgozók munkakörülményeit, biztonságot, megbízhatóságot és hatékonyságot biztosít az ipar számára, az orvosi eszközöktől az autóiparig. „Az Ipar 4.0 valóban egy intelligens ökoszisztéma, amely összefogja a gyár valamennyi rendszerét, hogy segítsen a folyamatot irányítóknak, és a gyárban dolgozó alkalmazottaknak a jobb tájékozódásban” – mondta Andrew Storm, az Eckhart vezérigazgatója. „A Fortune 500 lista gyárigazgatóinak kilencven százaléka úgy véli, hogy az Ipar 4.0 technológiák bevezetése elengedhetetlen” – tette hozzá Dan Burseth, az Eckhart alelnöke. (A Fortune 500 az USA legnagyobb árbevételű cégeinek listája)
3D nyomtatott egyedi szenzortartó konzol
Személyre szabott, bevált additív megoldások
Az Eckhart testreszabja gyártósori megoldásait az egyes ügyfelek egyedi igényeinek kielégítése érdekében. Megmutatja, hogy pontosan hol fejlődhetnek az ergonómia, a helyszín vagy az anyagköltség tekintetében, önvezető járművek, kollaboratív robotika használatával és 3D nyomtatással. „Ügyfeleink bevált, tartós megoldásokat akarnak. Az összeszerelő üzemben kíméletlenek a körülmények: az eszközöket óránként 60-szor használják, napi háromszor 8 órás műszakban, heti 6-7 napon át” – mondta Bob Heath, az Eckhart Additive Manufacturing tervezőmérnöke. A Stratasys mérnöki minőségű alapanyagai, a Nylon 12 szénszálas és az ULTEM™ 1010 resin segítségével olyan tartós megoldásokat tudunk előállítani, amelyek ellenállóak, és kibírják a kíméletlen automatizált ipari környezetet. Az olyan nagy ipari ügyfeleknek, mint a Ford, a Mercedes, vagy az Airbus, az Eckhart megmutatta, hogy a Stratasys alapanyagaiból készült gyártósori eszközök alkalmazása jelentősen javítja a gyártási folyamatot.
„Korábban az alkatrészeinket annak megfelelően kellett megterveznünk, hogy milyen eljárással fogjuk legyártani például manuális megmunkálással vagy CNC-marással. Az additív gyártással azonban korlátlanok a lehetőségek, bármilyen komplikált alkatrész előállítható.”
Sok Eckhart ügyfél ébredt rá, mekkora előnyt jelentenek a gyártási folyamatok során alkalmazott 3D nyomtatott szerelő ülékek, illesztősablonok, és szerszámok.
3D nyomtatott rögzítő befogó
A logók, emblémák, címkék felhelyezése a járművekre egy gyakran ismétlődő művelet. Az ehhez használatos pozicionáló eszköz kerete igen nehéz, és akár óránként 60-szor is fel kell emelnie a gyárban dolgozó operátoroknak. Ez a folyamatos, ismétlődő mozdulatsor könnyen sérüléshez vezethet. A 3D nyomtatás alkalmazásával hatékonyan megoldható a tömegcsökkentés, így a könnyített eszközök használatával a sérülések kialakulási esélye csökkenthető.
„Az additív gyártás egy olyan eszköz a kezünkben, amellyel nem helyettesítjük a munkavállalót, de a hatékonyságát az ötszörösére növelhetjük” -mondta Drew Morales, az Eckhart üzletfejlesztési igazgatója.
Társulás egy korszerű jövőért
Az Eckhart felismerte, hogy az idő és az innováció kulcsfontosságú tényezők, és minden vállalkozásra súlyos nyomás nehezedik, hogy gyorsabb legyen. Ez mindenkire vonatkozik, kezdve a tehergépjármű gyártó Caterpillar-tól az orvostechnikai eszközöket gyártó Medtronic-on át a repülőgépgyártókig, mint az Airbus, Boeing vagy a Lockheed Martin.
„Nagyon erőteljesen érezzük, hogy a 3D nyomtatás egy olyan katalizátor, amely lehetővé teszi a vállalkozások számára, hogy sokkal gyorsabban teszteljék az ötleteiket, elképzeléseiket, mint korábban” – mondta Storm.
Az Eckhart esettanulmányán keresztül jól érzékélhető a 3D nyomtatás előnye és kiemelt szerepe az Ipar 4.0 bevezetésében.
Töltse le tervezési útmutatónkat, amelyből megismerheti az FDM technológiai eljárásra vonatkozó tervezési szempontokat! Tervezési szempontok FDM nyomtatáshoz
Megjelent a Stratasys TPU 92A Elasztomer alapanyag
A Stratasys F123 3D nyomtató sorozata a nagy teljesítményű FDM technológia és a GrabCAD Print szoftver nyomtatást támogató funkcióinak segítségével a lehető legsokoldalúbb és legintelligensebb megoldást nyújtja. Most megérkezett hozzá a legújabb alapanyag, a rugalmas TPU 92A elasztomer.
TPU 92A elasztomer alapanyagból nyomtatott alkatrész. A kép forrása: www.stratasys.com
A TPU-t (Thermoplastic Polyurethane Elastomer) az olyan kiváló tulajdonságai, mint a nyújthatóság, a kiváló szilárdság és az extrém tartósság, alkalmassá teszik komplex, üreges, rugalmas prototípusok és kis sorozatban gyártható termékek 3D nyomtatására. Az oldható támaszanyagnak köszönhetően nem kell többé tervezési kompromisszumokat kötni, és a költségek is csökkennek.
Az új, rugalmas és szakadásálló alapanyag széleskörű felhasználási lehetőséget kínál az iparban, mint pl. az autóipar vagy a sportszergyártás. Többek között készíthetők belőle különféle tömítések, tömlők, csövek, konzolbélések, fogantyúk, felületvédők.
Amennyiben szeretne elsőként értesülni a 3D nyomtatással kapcsolatos hírekről, rendezvényeinkről, akcióinkról, kérjük, kattintson az alábbi gombra.
A Surrey-központú McLaren Racing csapat, amely 12 versenyzői és 8 konstruktőri bajnokságot nyert eddig a Forma-1-ben. Mostantól a Stratasys 3D nyomtatási technológiáit alkalmazza a tervváltozatok elkészítésének felgyorsítására és a McLaren versenyautó súlyának csökkentésére.
A 2017-es versenyautó teljesítményének javítására tervezett 3D nyomtatott alkatrészek közé hidraulikavezetéket tartó konzol, rugalmas rádió kábelkorbácstartó, szénszálas kompozit fékhűtő csövek és hátsó szárnyvéglap tartozik.
A versenyautó konzolja négy óra alatt készült el, szemben a hagyományos gyártási folyamatok kéthetesre becsült gyártási idejével.
A kép a McLaren tulajdona.
A McLaren a hidraulikus vezeték rögzítésére szolgáló szerkezeti konzolt 3D nyomtatással, egy Stratasys Fortus 450mc 3D nyomtató segítségével, szénszál-erősítésű nylon anyagból (FDM Nylon 12CF) készítette el.
A versenyautó hidraulikavezeték-tartó konzolja. A kép a McLaren tulajdona.
Hasonlóképpen, egy új, kétirányú kommunikációs és adatrendszer is bekerült a versenyautóba, de a kábel elvonta a pilóta figyelmét. Ennek megszüntetése érdekében a McLaren kihasználta azt, hogy a Stratasys J750 3D nyomtató rugalmas anyagok nyomtatására is képes, és előállított egy gumihoz hasonló anyagú tartót a kommunikációs rendszer kábelkorbácsainak kötegeléséhez. Egyetlen nap alatt megtörtént a három tervváltozat elkészítése és 3D nyomtatása.
A versenyautó rádió-kábelkorbácsa. A kép a McLaren tulajdona.
A versenyautó hátulján lévő, a hátsó leszorítóerő növelésére szolgáló nagy méretű szárnyvéglap szénszál-erősítésű kompozitból készült, egy FDM-alapú Fortus 900mc 3D nyomtatóval előállított szerszám segítségével. A csapat három nap alatt végzett a 900 mm széles, magas hőmérsékleten (177 °C), ULTEM™ 1010 resin alapanyagból készült öntőforma 3D nyomtatásával az autoklávozott kompozit szerkezetben való felhasználásra, amivel a csapat időt takaríthatott meg a kritikus fontosságú, korlátozott tesztelési időszakban.
Neil Oatley, a McLaren Racing tervezésért és fejlesztésért felelős igazgatója a következőket mondta el: „Folyamatosan módosítjuk és tökéletesítjük a Forma 1-es versenyautó terveit, így az új tervváltozatok gyors tesztelésére való képesség alapvető fontosságú az autó könnyebbé tételéhez, és még inkább a nagyobb teljesítményt célzó, kézzelfogható változatok számának növelése tekintetében.
Oldható 3D nyomtatott szerszámok a versenyautó fékalkatrészeinek hőmérsékletszabályozásához
Ha az autóval kapcsolatos új fejlesztéseket egy versennyel hamarabb mutathatjuk be, miközben az új ötletből mindössze néhány nap alatt új alkatrész lesz, az kulcstényező a McLaren versenyképességének növeléséhez.
Azzal, hogy egyre szélesebb körben alkalmazzuk a Stratasys 3D nyomtatási technológiáját a gyártási folyamatainkban – a kész alkatrészek előállításakor, a kompozitgyártáskor, vagy akár fogyóeszközök, például megmunkálóbefogók készítésekor – csökkenthetjük az átfutási időt, és közben összetettebb alkatrészeket gyárthatunk.”
A tervezési és gyártási ciklus felgyorsítása érdekében a versenycsapat a Stratasys uPrint SE Plus készüléket a tesztek és versenyek során a helyszínen is alkalmazni fogja. Így lehetővé teszi a csapat számára, hogy igény szerint állíthasson elő alkatrészeket és szerszámokat.
A kép a McLaren tulajdona.
A fékalkatrészek hőmérsékletének hatékony szabályozásához a McLaren 3D nyomtatással készült oldható szerszámokat állít elő, amelyeket üreges kompozit fékhűtő csövek gyártására használ. A kimosható mag 3D nyomtatással készült, kifejezetten ehhez az alkalmazáshoz fejlesztett oldható ST-130 anyagból. Ezt szénszál-erősítésű kompozit anyaggal vonták be, majd magas hőmérsékleten autoklávozták. A folyamat végeredménye egy csőszerű szerkezet, amelynek rendkívül sima belső felülete biztosítja a szükséges légáramlást a fékekhez, miközben maximális aerodinamikai és motorteljesítményt biztosít.
Forrás: Stratasys; McLaren; theengineer.com; Autopro.hu. A képek a McLaren és a Stratasys tulajdona.
Ismerje meg Ön is a McLaren által is sikeresen alkalmazott Stratasys FDM 3D nyomtatókat!
Ez a weboldal sütiket (kisméretű szöveges fájlokat) használ, hogy a lehető legjobb felhasználói élményt nyújtsa az Ön számára. A süti információkat a böngésző tárolja és felismeri ha Ön járt már a weblapunkon. A böngészési információk segítségével cégünk hatékonyan tudja továbbfejleszteni a weboldalainkat a legoptimálisabb működés céljából. A böngészési információk névtelenül kerülnek rögzítésre és bizalmasan kezeljük.
A süti beállításokat a bal oldalon található fülekre kattintva tudja módosítani!
Feltétlenül Szükséges Sütik
Feltétlenül szükséges cookie: ezek a cookie-k segítséget nyújtanak honlapon történő mozgásban, megjegyzik a felhasználó egyes oldalakon végzett műveleteit. Ezen cookie-k nélkül a szolgáltatások nem működnének. Ezek a cookie-k nem tárolnak olyan adatokat a felhasználóról, hogy milyen oldalakat nézett meg az interneten, vagy amelyeket marketing célból lehetne felhasználni.
Ha kikapcsolja ezt a sütit, nem engedélyezi, hogy elmentjük az adatait.
If you disable this cookie, we will not be able to save your preferences. This means that every time you visit this website you will need to enable or disable cookies again.
További részletek:
A feltétlenül szükséges cookie-kat az alábbiakra használjuk:
– Emlékszik a begépelt információkra a megrendelések oldalain, amikor a felhasználó különböző oldalakra navigál a böngészés ideje alatt;
– Emlékszik a megrendelt termékekre, szolgáltatásokra, miután kijelentkezik a weboldalról;
– Felismeri a felhasználót, ha bejelentkezik a weboldalunkra;
– Meggyőződik róla, hogy a felhasználó megfelelő szolgáltatáshoz kapcsolódik, miután néhány dolgot módosítottunk a weboldal működésén
– Elirányítja a felhasználót különböző szolgáltatások applikációihoz, vagy speciális szerverekhez.Ezen cookie-k elfogadása feltétele honlapunk megfelelő használatának, így ha a felhasználó kikapcsolja ezeket a cookie-kat, nem tudjuk garantálni weboldalunk megfelelő működését, illetve a megfelelő biztonságot oldalunk használata során.
3rd Party sütik
Teljesítményt biztosító cookie-k: információkat gyűjtenek arról, hogy a felhasználó hogyan használja weboldalunkat (pl. milyen oldalakat tekint meg, tapasztal-e valamilyen hibát). Ezek a cookie-k nem gyűjtenek információt, amelyek alapján azonosítható a felhasználó, és a következőkre használjuk:
– Web elemzések (Analytics): statisztikákat szolgáltat arról, hogy használják weboldalunkat
– Hirdetések válaszolási aránya, hatékonysága
– Hiba menedzsment
– Weboldal design-ok tesztelése
Kérjük fogadja el a Feltétlenül Szükséges Sütiket, hogy regisztrálhassak adatait, melyeket bizalmasan kezelünk.
Egyéb sütik
Használatot elősegítő cookie-k:ezeket a cookie-kat különböző szolgáltatások nyújtására használjuk, illetve hogy megjegyezzük a felhasználó beállításait, hogy megkönnyítsük az oldal látogatását.
A teljesítményt biztosító cookie-kat az alábbiakra használjuk:
– Emlékszik a felhasználó beállításaira, mint pl. weboldal elrendezése, a szöveg mérete, előnyben részesítet beállítások és színek;
– Megmutatja, hogy a felhasználó mikor jelentkezett be a weboldalra.
A fenti cookie-k közül néhányat harmadik fél használ, esetlegesen további információkért keresse fel ezen partnerek weboldalán található titoktartási leírásokat.
Kérjük fogadja el a Feltétlenül Szükséges Sütiket, hogy regisztrálhassak adatait, melyeket bizalmasan kezelünk.
Süti szabályzat
Cookie (süti) szabályzat
Az EU 2009/136/CE rendelete és a vonatkozó jogszabályok szerint tájékoztatjuk Önt, hogy a következő weboldalaink saját és harmadik féltől származó cookie-kat használnak:
varinex.hu, 3dnyomtatas.varinex.hu, cad.varinex.hu, fea.varinex.hu, dental.varinex.hu, civil3d.varinex.hu, gis.varinex.hu, mapinfo.varinex.hu
Mik azok a cookie-k, sütik
A cookie egy rövid szöveges fájl, amit a webszerverünk elküld az Ön eszközére (legyen szó bármilyen számítógépről mobiltelefontról vagy tabletről). Vannak ideiglenes (munkamenet) cookie-k, amelyek automatikusan törlődnek az eszközéről, amikor bezárja a böngészőt, és vannak hosszabb élettartamú cookie-k, amelyek hosszabb ideig maradnak az Ön eszközén (ez függ az Ön eszközének beállításától is).
A cookie-kat elsősorban az Ön kényelme érdekében alkalmazzuk. A cookie-kon keresztül tudjuk megérteni az Ön böngészési szokásait, hogy releváns termékeket tudjunk ajánlani, vagy megjegyezzük a beállításait. A cookie-k használatával tudunk gyűjteni olyan nem személyes adatokat, amellyel meg tudjuk határozni, hogy oldalunknak melyek a népszerű aloldalai, termékei, így tudjuk tovább fejleszteni az oldalt úgy, hogy a látogatóink igényeinek megfeleljen. A cookie-k segítségével tudunk célzott hirdetéseket is alkalmazni, hogy az Önnek megfelelő hirdetéseket lássa leginkább. Lényeges, hogy az oldalunkon használt cookie-kba nem semmilyen azonosítót vagy jelszót.
Milyen cookie-kat használunk, használhatunk
Rendszer cookie-k: ez ellenőrzi, hogy lementhetők-e a cookie-k és általános beállításokat tárol. Pop-up cookie-k: bizonyos helyzetekben használunk pop-up ablakokat. Hogy ezek csak egyszer jelenjenek meg, ezekben a cookie-kban tároljuk le, hogy már megjelent-e Önnek. Nyomon követő cookie-k: ezzel tudunk statisztikákat készíteni az oldal használatáról, vásárlásokról Banner követő cookie-k: ezzel az oldalon belül megjelenő promóciókra történő reakciókat tudjuk összesíteni Google AdWords cookiek: hogy megfelelő hirdetések jelenjenek meg Önnek, bővebben: https://www.google.com/intl/hu/policies/privacy/ Facebook cookie-k: hogy megfelelő hirdetések jelenjenek meg Önnek, bővebben: https://www.facebook.com/policies/cookies/
Hogyan törölheti a cookie-kat, és hogyan tilthatja le azokat
Amennyiben nem tiltja le a cookie-k használatát a fent jelzett módokon, Ön elfogadja, hogy az oldalunk böngészésével cookie-kat tároljunk az eszközén. Amennyiben letiltja azokat, kérem vegye figyelembe, hogy az oldalunkon nem biztos, hogy minden funkció elérhető lesz, illetve az oldal teljesítménye is gyengülhet.